相似理论与量纲分析课件_第1页
相似理论与量纲分析课件_第2页
相似理论与量纲分析课件_第3页
相似理论与量纲分析课件_第4页
相似理论与量纲分析课件_第5页
已阅读5页,还剩107页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

相似理论与量纲分析相似理论与量纲分析§9.1相似理论基础

为使模型流动能表现出原型流动的主要现象和特性,并从模型流动上预测出原型流动的结果,就必须使两者在流动上相似,即两个流动的对应时刻对应点上同名物理量具有各自的比例关系。具体来说,两相似流动应几何相似、运动相似、动力相似。两流动相似应满足的条件§9.1相似理论基础为使模型流动一几何相似(空间相似)

定义:两流动流场的几何形状相似,即两流动的对应长度成比例,对应角度相等。引入尺度比例系数

进而,面积比例系数体积比例系数模型流动用下标m表示原型流动用下标p表示一几何相似(空间相似)定义:两流动流场的几何形状相二运动相似(时间相似)

定义:两流动的速度场相似,即两个流动的对应时刻对应点的速度方向相同,大小成比例。引入速度比例系数由于因此

二运动相似(时间相似)定义:两流动的速度场相运动相似需要建立在几何相似基础上.因此运动相似只需确定时间比例系数就可以了。故运动相似也就被称之为时间相似。运动相似需要建立在几何相似基础上.因此运动相似只需确定时间比运动学物理量的比例系数都可以表示为长度比尺和时间比尺的不同组合形式。如:

的单位是m2/sQ的单位是m3/t运动学物理量的比例系数都可以表示为长度比尺和时间比尺的不同组三动力相似(受力相似)

定义:两流动的对应点上质点所受F的方向相同,大小成比例。引入力比例系数也可写成

三动力相似(受力相似)定义:两流动的对应点上质力学物理量的比例系数可以表示为密度、尺度、速度比尺的不同组合形式,如:力矩M压强p功率N动力粘度力学物理量的比例系数可以表示为密度、尺度、速度比尺的不同组合综上所述,要使模型流动和原型流动相似,需要两者在时空相似的条件下受力相似。动力相似(受力相似)用相似准则(相似准数)的形式来表示,即:要使模型流动和原型流动动力相似,需要这两个流动在时空相似的条件下各相似准则都相等。综上所述,要使模型流动和原型流动相三种相似之间的联系:几何相似是运动相似和动力相似的前提与依据;动力相似是决定两个流动相似的主导因素;运动相似是几何相似和动力相似的表现。三种相似之间的联系:几何相似是运动相似和动力相似的前提与依据§9.2相似准则

相似准则:几何比尺、运动比尺和动力比尺之间由力学基本定律规定了的一定的约束关系。一、牛顿相似准则两流动动力相似要求对应点处液体质点所受各种力大小成比例。粘性力、重力、动水压力等是企图改变流体运动状态的力;而惯性力是企图维持液体运动状态的力,液体流动的变化是惯性力和其它各种力相互作用的结果。

§9.2相似准则惯性力则惯性力之比:另一企图改变流体运动状态的力为F,其比尺为CF。由动力相似有如下关系:CF=CI惯性力即:式中:是一个无量纲数即:因此,两个流动相似的重要标志是它们的牛顿准则数相等:即因此,两个流动相似的重要标志是它们的牛顿准则数相等:即二、雷诺准则

对于有压流动,粘性力是主要作用力。

粘性力比尺

二、雷诺准则

对于有压流动,粘性力是主要作用力。

粘性力比尺要满足惯性力相似,必须满足CT=CI,即即要满足惯性力相似,必须满足CT=CI,即雷诺数的物理意义雷诺数Re反映了惯性力与粘性力之比:雷诺数的物理意义雷诺数Re反映了惯性力与粘性力之比:三、佛汝德准则

对于具有自由表面的流动,重力是主要的作用力。

重力比尺

三、佛汝德准则

对于具有自由表面的流动,重力是主要的作用力。要满足重力相似,必须满足CG=CI,即即要满足重力相似,必须满足CG=CI,即佛汝德数的物理意义佛汝德数Fr反映了惯性力与重力之比:佛汝德数的物理意义佛汝德数Fr反映了惯性力与重力之比:四、欧拉准则

作用在两流动对应点上的动水总压力之比为:

四、欧拉准则

作用在两流动对应点上的动水总压力之比为:

要满足动水总压力相似,必须满足CP=CI,即即要满足动水总压力相似,必须满足CP=CI,即欧拉数的物理意义欧拉数Eu反映了动水总压力与惯性力之比:通常,对流动起作用的是液流中两点压强差△p,而不是某点的压强p。故欧拉数常写为:欧拉数的物理意义欧拉数Eu反映了动水总压力与惯性力之比:注意:压力场的相似不是两个流动相似的原因,而是两个流动相似的结果。Eu准则不是独立的。只要主要的相似准则(Re或Fr)得到满足,则该准则必定满足。注意:压力场的相似不是两个流动相似的原因,而是两个流动相似的

综上所述,动力相似可以用相似准则数表示,若原型和模型流动动力相似,各同名相似准数均相等。综上所述,动力相似可以用相似准则数表示§9.3模型实验什么是模型实验:通常指用简化的可控制的方法再现实际发生的物理现象。实际发生的现象被称为原型现象,模型实验的侧重点是再现流动现象的物理本质;只有保证模型实验和原型中流动现象的物理本质相同,模型实验才是有价值的。

§9.3模型实验为什么要进行模型实验•科学研究和生产设计需要做模型实验;•并不是所有的流动现象都需要做模型实验。做理论分析或数值模拟的流动现象都不必模拟实验。•并不是所有的流动现象都能做模型实验。只有对其流动现象有充分的认识,并了解支配其现象的主要物理法则,但还不能对其作理论分析或数值模拟的原型最适合做模型实验。为什么要进行模型实验•科学研究和生产设计需要做模型实验;一、相似准则的选择为了使两流动完全相似,在满足几何相似的前提下,各独立的相似准则应同时得到满足。这在实际实验中往往很难实现,甚至是不可能的。一、相似准则的选择为了使两流动完全相似,在满足几何相似的前提例如:欲在某实验中实现雷诺准则和佛汝德准则的同时满足:即要实现流动相似应满足两个条件(1)模型流速原比型流速缩小倍;(2)模型流体的粘度应比原型粘度缩小倍,这很难实现。例如:欲在某实验中实现雷诺准则和佛汝德准则的同时满足:

因此,要使两者达到完全的动力相似,实际上办不到,我们寻求的是起主要作用的力相似——近似相似。例如:有压管流——粘性力起主要作用——雷诺准则明渠流动——重力起主要作用——佛汝德准则因此,要使两者达到完全的动力相似,实际上二、模型的设计1、首先根据实验场地和模型制作的条件定出长度比尺Cl;2、根据选定的长度比尺Cl确定出模型流动的几何边界;3、根据所选用的相似准则确定速度比尺和流量比尺,从而定出模型流动的流量。二、模型的设计1、首先根据实验场地和模型制作的条件定出长度比

例1有一轿车,高hp=1.5m,在公路上行驶,设计时速vp=108km/h,拟通过风洞中模型实验来确定此轿车在公路上以此速行驶时的空气阻力。已知该风洞系低速全尺寸风洞(Cl=3/2),并假定风洞试验段内气流温度与轿车在公路上行驶时的温度相同,试求:风洞实验时,风洞实验段内的气流速度应安排多大?

例1有一轿车,高hp=1.5m,在公路上行驶,设解:首先根据流动性质确定决定性相似准则数,这里选取Re作为决定性相似准则数,Rem=Rep,即CvCl/C=1,再根据决定型相似准数相等,确定几个比尺的相互约束关系,这里C=1,所以Cv=Cl-1,由于Cl=lp/lm=3/2,那么Cv=vp/vm=1/Cl=2/3最后得到风洞实验段内的气流速度应该是

vm=vp/Cv=108/(2/3)=162km/h=45m/s解:首先根据流动性质确定决定性相似准则数,这里选取Re作为

例2在例1中,通过风洞模型实验,获得模型轿车在风洞实验段中的风速为45m/s时,空气阻力为1000N,问:此轿车以108km/h的速度在公路上行驶时,所受的空气阻力有多大?

例2在例1中,通过风洞模型实验,获得模型轿车在风解:在设计模型时,定下

C=1Cl=3/2Cv=2/3在相同的流体和相同的温度时,流体密度比例系数C=1,那么力比例系数

CF=CCl2CV2CF=1×(3/2)2×(2/3)2=1因此,该轿车在公路上以108km/h的速度行驶所遇到的空气阻力

Fp=FmCF=1000×1=1000N解:在设计模型时,定下相似理论与量纲分析课件§9.4量纲分析法一量纲的概念二量纲齐次性原理三量纲分析法

§9.4量纲分析法9.4.1量纲的概念量纲的定义:量纲是物理量的单位种类,又称因次。如长度、宽度、高度、深度、厚度等都可以米、英寸、公尺等不同单位来度量,但它们属于同一单位,即属于同一单位量纲(长度量纲),用[L]表示。量纲的表示方法:物理量的代表符号外加上中括号。如[L],[M],[T]等。用[]表示物理量的量纲,用()表示物理量的单位9.4.1量纲的概念量纲的定义:用[]表示物理量的量纲量纲的分类:基本量纲导出量纲基本量纲是一组具有独立性的量纲。在水力学领域中有三个基本量纲:[L],[T],[M]。导出量纲由基本量纲组合或推导出来的量纲。如加速度的量纲[a]=LT-2;力的量纲[F]=[ma]=MLT-2

量纲的分类:基本量纲导出量纲9.4.2有量纲量和无量纲量水力学中任何物理量C的量纲可写成[C]=[M][L][T]当α、β、γ不全为0时,C称为有量纲量。当α、β、γ全部为0时,C称为无量纲量或无量纲数。9.4.2有量纲量和无量纲量有量纲量水力学中的有量纲量可分为三类:1、几何学的量,α=γ=0,β≠0;2、运动学的量,α=0,γ≠0;3、动力学的量,α≠0。有量纲量无量纲量

无量纲量9.4.3量纲齐次性原理量纲齐次性原理又被称为量纲一致性原理,也叫量纲和谐性原理,指凡是正确反映客观规律的物理方程,其各项的量纲必须是一致的。推论:凡是正确反映客观规律的物理方程,必然可以写成无量纲形式。

9.4.3量纲齐次性原理忽略重力的伯努利方程物理方程的无量纲化(沿流线)(沿流线)无量纲化伯努利方程•在无粘性圆柱绕流中前后驻点上下侧点其他点•以上结果对任何大小的来流速度,任何大小的圆柱都适用。柱面上:柱面外:流场中还与无量纲半径有关·C·DABa忽略重力的伯努利方程物理方程的无量纲化(沿流线)(沿流线)无9.4.4量纲分析法

对于复杂的流动,常用量纲分析法和实验相结合进行研究。量纲分析法是根据量纲齐次性原理寻求物理量之间函数关系的一种方法,也可以得出相似准则。量纲分析法有两种:雷利法和π定理9.4.4量纲分析法

对于复杂的流动,常用量纲分析法和雷利法解题步骤:首先找出影响流动的物理量,并用它们写出假拟的指数方程;然后以对应的量纲代替方程中的物理量本身,并根据量纲和谐性原理求出各物理量的指数,整理出最后形式。雷利法解题步骤:首先找出影响流动的物理量,并用它们写出假拟的例题a:自由落体运动的位移s与时间t、重力加速度g有关。试求位移s的表达式。解:s=Kgatb[L]=[LT-2]a[T]b根据量纲和谐原理,方程两侧的量纲应一致,则La=1T-2a+b=0得出:a=1,b=2s=Kgt2例题a:自由落体运动的位移s与时间t、重力加速度g有关。试求例题b:液体在恒定水头H作用下从面积为A的孔口流出,v与H、ρ、g和μ有关。试求v的表达式。解:v=KHaρbgcμd[LT-1]=[L]a[ML-3]b[LT-2]c[ML-1T-1]d……例题b:液体在恒定水头H作用下从面积为A的孔口流出,v与H、Π定理对于某个物理现象或过程,如果存在有n个变量互为函数关系,

f(a1,a2,…an)=0而这些变量含有m个基本量纲,可把这n个变量转换成为有(n-m)=i个无量纲量的函数关系式

F(1,2,…n-m)=0这样可以表达出物理方程的明确的量间关系,并把方程中的变量数减少了m个,更为概括集中表示物理过程或物理现象的内在关系。Π定理对于某个物理现象或过程,如果存在有n个变量互为函数关系

例经初步分析知道,在水平等直径圆管道内流体流动的压降p与下列因素有关:管径d、管长l、管壁粗糙度、管内流体密度、流体的动力粘度,以及断面平均流速v有关。试用定理推出压降p的表达形式。解:所求解问题的原隐函数关系式为f(p,d,l,,,,v)=0有量纲的物理量个数n=7,此问题的基本量纲有L、M、T三个,m=3,按定理,这n个变量转换成有n-m=4个无量纲量的函数关系式F(1,2,3,4)=0从7个物理量中选出基本物理量3个,如取、d、v,而其余物理量用基本物理量的幂次乘积形式表示

例经初步分析知道,在水平等直径圆管道内流体流动1=l1v1d1

2=2v2d23=3v3d3

4=p4v4d41=l1v1d1将上述表达式写成量纲形式[1]=L(ML-3)1(LT-1)1L1=M0L0T

(1)

[2]=L(ML-3)2(LT-1)2L2=M0L0T0(2)

[3]=ML-1T-1(ML-3)3(LT-1)3L3=M0L0T0(3)

[4]=ML-1T-2(ML-3)4(LT-1)4L4=M0L0T0(4)

将上述表达式写成量纲形式求解方程(1)M:1=0T:1=0L:-31+1+1+1=0→1=-1所以1=l/d求解方程(2)M:2=0T:2=0L:1-32+2+2=0→2=-1所以2=/d求解方程(1)M:1=0求解方程(3)M:1+3=0→3=-1T:-1-3=0→3=-1L:-1-33+3+3=0→3=-1所以3=/vd=1/Re求解方程(4)M:1+4=0→4=-1T:-2-4=0→4=-2L:-1-34+4+4=0→4=0所以4=p/v2因此,所解问题用无量纲数表示的方程为F(l/d,/d,1/Re,p/v2)=0求解方程(3)M:1+3=0→3=-1至此,问题求解结束,进一步对上式整理规范。由上式可知p/v2与其余三个无量纲数有关,那么p/v2=F1(l/d,/d,1/Re)=(l/d)F2(/d,1/Re)

p/g=p/=(l/d)(v2/2g)F2(/d,1/Re)至此,问题求解结束,进一步对上式整理规范。由上式令=

F2(/d,1/Re)p/=(l/d)(v2/2g)这就是达西公式,为沿程阻力系数,表示了等直圆管中流动流体的压降与沿程阻力系数、管长、速度水头成正比,与管径成反比。令=F2(/d,1/Re)相似理论与量纲分析相似理论与量纲分析§9.1相似理论基础

为使模型流动能表现出原型流动的主要现象和特性,并从模型流动上预测出原型流动的结果,就必须使两者在流动上相似,即两个流动的对应时刻对应点上同名物理量具有各自的比例关系。具体来说,两相似流动应几何相似、运动相似、动力相似。两流动相似应满足的条件§9.1相似理论基础为使模型流动一几何相似(空间相似)

定义:两流动流场的几何形状相似,即两流动的对应长度成比例,对应角度相等。引入尺度比例系数

进而,面积比例系数体积比例系数模型流动用下标m表示原型流动用下标p表示一几何相似(空间相似)定义:两流动流场的几何形状相二运动相似(时间相似)

定义:两流动的速度场相似,即两个流动的对应时刻对应点的速度方向相同,大小成比例。引入速度比例系数由于因此

二运动相似(时间相似)定义:两流动的速度场相运动相似需要建立在几何相似基础上.因此运动相似只需确定时间比例系数就可以了。故运动相似也就被称之为时间相似。运动相似需要建立在几何相似基础上.因此运动相似只需确定时间比运动学物理量的比例系数都可以表示为长度比尺和时间比尺的不同组合形式。如:

的单位是m2/sQ的单位是m3/t运动学物理量的比例系数都可以表示为长度比尺和时间比尺的不同组三动力相似(受力相似)

定义:两流动的对应点上质点所受F的方向相同,大小成比例。引入力比例系数也可写成

三动力相似(受力相似)定义:两流动的对应点上质力学物理量的比例系数可以表示为密度、尺度、速度比尺的不同组合形式,如:力矩M压强p功率N动力粘度力学物理量的比例系数可以表示为密度、尺度、速度比尺的不同组合综上所述,要使模型流动和原型流动相似,需要两者在时空相似的条件下受力相似。动力相似(受力相似)用相似准则(相似准数)的形式来表示,即:要使模型流动和原型流动动力相似,需要这两个流动在时空相似的条件下各相似准则都相等。综上所述,要使模型流动和原型流动相三种相似之间的联系:几何相似是运动相似和动力相似的前提与依据;动力相似是决定两个流动相似的主导因素;运动相似是几何相似和动力相似的表现。三种相似之间的联系:几何相似是运动相似和动力相似的前提与依据§9.2相似准则

相似准则:几何比尺、运动比尺和动力比尺之间由力学基本定律规定了的一定的约束关系。一、牛顿相似准则两流动动力相似要求对应点处液体质点所受各种力大小成比例。粘性力、重力、动水压力等是企图改变流体运动状态的力;而惯性力是企图维持液体运动状态的力,液体流动的变化是惯性力和其它各种力相互作用的结果。

§9.2相似准则惯性力则惯性力之比:另一企图改变流体运动状态的力为F,其比尺为CF。由动力相似有如下关系:CF=CI惯性力即:式中:是一个无量纲数即:因此,两个流动相似的重要标志是它们的牛顿准则数相等:即因此,两个流动相似的重要标志是它们的牛顿准则数相等:即二、雷诺准则

对于有压流动,粘性力是主要作用力。

粘性力比尺

二、雷诺准则

对于有压流动,粘性力是主要作用力。

粘性力比尺要满足惯性力相似,必须满足CT=CI,即即要满足惯性力相似,必须满足CT=CI,即雷诺数的物理意义雷诺数Re反映了惯性力与粘性力之比:雷诺数的物理意义雷诺数Re反映了惯性力与粘性力之比:三、佛汝德准则

对于具有自由表面的流动,重力是主要的作用力。

重力比尺

三、佛汝德准则

对于具有自由表面的流动,重力是主要的作用力。要满足重力相似,必须满足CG=CI,即即要满足重力相似,必须满足CG=CI,即佛汝德数的物理意义佛汝德数Fr反映了惯性力与重力之比:佛汝德数的物理意义佛汝德数Fr反映了惯性力与重力之比:四、欧拉准则

作用在两流动对应点上的动水总压力之比为:

四、欧拉准则

作用在两流动对应点上的动水总压力之比为:

要满足动水总压力相似,必须满足CP=CI,即即要满足动水总压力相似,必须满足CP=CI,即欧拉数的物理意义欧拉数Eu反映了动水总压力与惯性力之比:通常,对流动起作用的是液流中两点压强差△p,而不是某点的压强p。故欧拉数常写为:欧拉数的物理意义欧拉数Eu反映了动水总压力与惯性力之比:注意:压力场的相似不是两个流动相似的原因,而是两个流动相似的结果。Eu准则不是独立的。只要主要的相似准则(Re或Fr)得到满足,则该准则必定满足。注意:压力场的相似不是两个流动相似的原因,而是两个流动相似的

综上所述,动力相似可以用相似准则数表示,若原型和模型流动动力相似,各同名相似准数均相等。综上所述,动力相似可以用相似准则数表示§9.3模型实验什么是模型实验:通常指用简化的可控制的方法再现实际发生的物理现象。实际发生的现象被称为原型现象,模型实验的侧重点是再现流动现象的物理本质;只有保证模型实验和原型中流动现象的物理本质相同,模型实验才是有价值的。

§9.3模型实验为什么要进行模型实验•科学研究和生产设计需要做模型实验;•并不是所有的流动现象都需要做模型实验。做理论分析或数值模拟的流动现象都不必模拟实验。•并不是所有的流动现象都能做模型实验。只有对其流动现象有充分的认识,并了解支配其现象的主要物理法则,但还不能对其作理论分析或数值模拟的原型最适合做模型实验。为什么要进行模型实验•科学研究和生产设计需要做模型实验;一、相似准则的选择为了使两流动完全相似,在满足几何相似的前提下,各独立的相似准则应同时得到满足。这在实际实验中往往很难实现,甚至是不可能的。一、相似准则的选择为了使两流动完全相似,在满足几何相似的前提例如:欲在某实验中实现雷诺准则和佛汝德准则的同时满足:即要实现流动相似应满足两个条件(1)模型流速原比型流速缩小倍;(2)模型流体的粘度应比原型粘度缩小倍,这很难实现。例如:欲在某实验中实现雷诺准则和佛汝德准则的同时满足:

因此,要使两者达到完全的动力相似,实际上办不到,我们寻求的是起主要作用的力相似——近似相似。例如:有压管流——粘性力起主要作用——雷诺准则明渠流动——重力起主要作用——佛汝德准则因此,要使两者达到完全的动力相似,实际上二、模型的设计1、首先根据实验场地和模型制作的条件定出长度比尺Cl;2、根据选定的长度比尺Cl确定出模型流动的几何边界;3、根据所选用的相似准则确定速度比尺和流量比尺,从而定出模型流动的流量。二、模型的设计1、首先根据实验场地和模型制作的条件定出长度比

例1有一轿车,高hp=1.5m,在公路上行驶,设计时速vp=108km/h,拟通过风洞中模型实验来确定此轿车在公路上以此速行驶时的空气阻力。已知该风洞系低速全尺寸风洞(Cl=3/2),并假定风洞试验段内气流温度与轿车在公路上行驶时的温度相同,试求:风洞实验时,风洞实验段内的气流速度应安排多大?

例1有一轿车,高hp=1.5m,在公路上行驶,设解:首先根据流动性质确定决定性相似准则数,这里选取Re作为决定性相似准则数,Rem=Rep,即CvCl/C=1,再根据决定型相似准数相等,确定几个比尺的相互约束关系,这里C=1,所以Cv=Cl-1,由于Cl=lp/lm=3/2,那么Cv=vp/vm=1/Cl=2/3最后得到风洞实验段内的气流速度应该是

vm=vp/Cv=108/(2/3)=162km/h=45m/s解:首先根据流动性质确定决定性相似准则数,这里选取Re作为

例2在例1中,通过风洞模型实验,获得模型轿车在风洞实验段中的风速为45m/s时,空气阻力为1000N,问:此轿车以108km/h的速度在公路上行驶时,所受的空气阻力有多大?

例2在例1中,通过风洞模型实验,获得模型轿车在风解:在设计模型时,定下

C=1Cl=3/2Cv=2/3在相同的流体和相同的温度时,流体密度比例系数C=1,那么力比例系数

CF=CCl2CV2CF=1×(3/2)2×(2/3)2=1因此,该轿车在公路上以108km/h的速度行驶所遇到的空气阻力

Fp=FmCF=1000×1=1000N解:在设计模型时,定下相似理论与量纲分析课件§9.4量纲分析法一量纲的概念二量纲齐次性原理三量纲分析法

§9.4量纲分析法9.4.1量纲的概念量纲的定义:量纲是物理量的单位种类,又称因次。如长度、宽度、高度、深度、厚度等都可以米、英寸、公尺等不同单位来度量,但它们属于同一单位,即属于同一单位量纲(长度量纲),用[L]表示。量纲的表示方法:物理量的代表符号外加上中括号。如[L],[M],[T]等。用[]表示物理量的量纲,用()表示物理量的单位9.4.1量纲的概念量纲的定义:用[]表示物理量的量纲量纲的分类:基本量纲导出量纲基本量纲是一组具有独立性的量纲。在水力学领域中有三个基本量纲:[L],[T],[M]。导出量纲由基本量纲组合或推导出来的量纲。如加速度的量纲[a]=LT-2;力的量纲[F]=[ma]=MLT-2

量纲的分类:基本量纲导出量纲9.4.2有量纲量和无量纲量水力学中任何物理量C的量纲可写成[C]=[M][L][T]当α、β、γ不全为0时,C称为有量纲量。当α、β、γ全部为0时,C称为无量纲量或无量纲数。9.4.2有量纲量和无量纲量有量纲量水力学中的有量纲量可分为三类:1、几何学的量,α=γ=0,β≠0;2、运动学的量,α=0,γ≠0;3、动力学的量,α≠0。有量纲量无量纲量

无量纲量9.4.3量纲齐次性原理量纲齐次性原理又被称为量纲一致性原理,也叫量纲和谐性原理,指凡是正确反映客观规律的物理方程,其各项的量纲必须是一致的。推论:凡是正确反映客观规律的物理方程,必然可以写成无量纲形式。

9.4.3量纲齐次性原理忽略重力的伯努利方程物理方程的无量纲化(沿流线)(沿流线)无量纲化伯努利方程•在无粘性圆柱绕流中前后驻点上下侧点其他点•以上结果对任何大小的来流速度,任何大小的圆柱都适用。柱面上:柱面外:流场中还与无量纲半径有关·C·DABa忽略重力的伯努利方程物理方程的无量纲化(沿流线)(沿流线)无9.4.4量纲分析法

对于复杂的流动,常用量纲分析法和实验相结合进行研究。量纲分析法是根据量纲齐次性原理寻求物理量之间函数关系的一种方法,也可以得出相似准则。量纲分析法有两种:雷利法和π定理9.4.4量纲分析法

对于复杂的流动,常用量纲分析法和雷利法解题步骤:首先找出影响流动的物理量,并用它们写出假拟的指数方程;然后以对应的量纲代替方程中的物理量本身,并根据量纲和谐性原理求出各物理量的指数,整理出最后形式。雷利法解题步骤:首先找出影响流动的物理量,并用它们写出假拟的例题a:自由落体运动的位移s与时间t、重力加速度g有关。试求位移s的表达式。解:s=Kgatb[L]=[LT-2]a[T]b根据量纲和谐原理,方程两侧的量纲应一致,则La=1T-2a+b=0得出:a=1,b=2s=Kgt2例题a:自由落体运动的位移s与时间t、重力加速度g有关。试求例题b:液体在恒定水头H作用下从面积为A的孔口流出,v与H、ρ、g和μ有关。试求v的表达式。解:v=KHaρbgcμd[LT-1]=[L]a[ML-3]b[LT-2]c[ML-1T-1]d……例题b:液体在恒定水头H作用下从面积为A的孔口流出,v与H、Π定理对于某个物理现象或过程,如果存在有n个变量互为函数关系,

f(a1,a2,…an)=0而这些变量含有m个基本量纲,可把这n个变量转换成为有(n-m)=i个无量纲量的函数关系式

F(1,2,…n-m)=0这样可以表达出物理方程的明确的量间关系,并把方程中的变量数减少了m个,更为概括集中表示物理过程或物理现象的内在关系。Π定理对于某个物理现象或过程,如果存在有n个变量互为函数关系

例经初步分析知道,在水平等直径圆管道内流体流动的压降p与下列因素有关:管径d、管长l、管壁粗糙度、管内流体密度、流体的动力粘度,以及断面平均流速v有关。试用定理推出压降p的表达形式。解:所求解问题的原隐函数关系式为f(p,d,l,,,,v)=0有量纲的物理量个数n=7,此问题的基本量纲有L、M、T三个,m=3,按定理,这n个变量转换成有n-m=4个无量纲量的函数关系式F(1,2,3,4)=0从7个物理量中选出基本物理量3个,如取、d、v,而其余物理量用基本物理量的幂次乘积形式表示

例经初步分析知道,在水平等直径圆管道内流体流动1=l1v1d1

2=2v2d23=3v3d3

4=p4v4d41=l1v1d1将上述表达式写成量纲形式[1]=L(ML-3)1(LT-1)1L1=M0L0T

(1)

[2]=L(ML-3)2(LT-1)2L2=M0L0T0(2)

[3]=ML-1T-1(ML-3)3(LT-1)3L3=M0L0T0(3)

[4]=ML-1T-2(ML-3)4(LT-1)4L4=M0L0T0(4)

将上述表达式写成量纲形式求解方程(1)M:1=0T:1=0L:-31+1+1+1=0→1=-1所以1=l/d求解方程(2)M:2=0T:2=0L:1-32+2+2=0→2=-1所以2=/d求解方程(1)M:1=0求解方程(3)M:1+3=0→3=-1T:-1-3=0→3=-1L:-1-33+3+3=0→3=-1所以3=/vd=1/Re求解方程(4)M:1+4=0→4=-1T:-2-4=0→4=-2L:-1-34+4+4=0→4=0所以4=p/v2因此,所解问题用无量纲数表示的方程为F(l/d,/d,1/Re,p/v2)=0求解方程(3)M:1+3=0→3=-1至此,问题求解结束,进一步对上式整理规范。由上式可知p/v2与其余三个无量纲数有关,那么p/v2=F1(l/d,/d,1/Re)=(l/d)F2(/d,1/Re)

p/g=p/=(l/d)(v2/2g)F2(/d,1/Re)至此,问题求解结束,进一步对上式整理规范。由上式令=

F2(/d,1/Re)p/=(l/d)(v2/2g)这就是达西公式,为沿程阻力系数,表示了等直圆管中流动流体的压降与沿程阻力系数、管长、速度水头成正比,与管径成反比。令=F2(/d,1/Re)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论